GENERAL INFORMATION FOR INDONESIAN MANGROVE1)

By

Cecep Kusmana2)

NTRODUCTION

Mangrove is a saline swamp forest in tropical and sub tropical intertidal regions.  In Southeast Asia, the word mangrove is used  for both individual plants and forest communities inhabiting tidal land.  Mangroves are among the world’s most productive ecosystems.  They protect coastline, enrich coastal waters,  support coastal fisheries, yield beneficial forest products and serve a habitat for various kinds of fauna.  Geographically, they are mainly distributed between 300 north and 300 south.  Northern extension of this limit occur in Japan (31022’ N) and Bermuda (32020’ N); southern extensions are in New Zealand (38003’ S), Australia (38045’ S) and on the east coast of South Africa (Spalding, 1997).

Indonesia is an archipelagic country with more than 17,000 islands and      95,181 km coastline.  A large part of this coastal area bears mangrove of various extents, from several meters to several kilometers wide.

The mangrove resources in Indonesia involve the flora, fauna and land resources which are needed for supporting many kinds of human needs.  In Indonesia, the mangroves developed well along the inner facing coast lines of most of the large islands and estuaries.  They are composed of trees, shrubs, herbs and grasses, epiphytes and parasites (Kusmana, 1993).  Those various kinds of mangrove flora have been supporting the daily life needs for local people living surrounding mangroves.

For century the Indonesian people have traditionally utilized mangroves, mainly  for  firewood, charcoal, tannin, dyes, food and beverages, medicine, pole and timber.  At an early stage of commercialization, the fishing and charcoal making are generally the basic economic activities in the mangrove areas.  However, in the following period a large scale of commercial mangrove exploitation in Indonesia has been begun with a production of logs, charcoal and chipwoods.  In the same time, the increasing of population growth and economic development in this country resulted in the destruction even disappearance of many mangroves through conversion of them to fishponds, industrial estates, transportation and recreation infrastructure, resettlement, tin mining, agricultural activities, and other uses.

The multiple role of the mangroves as a renewable resources in the coastal area in relation to serving valuable forest products and environmental services for the coastal population is well recognized in Indonesia, so that degraded mangroves must be rehabilitated and mangrove plantation should be established in some intertidal areas to enrich land productivity as well as environmental quality of the ecosystem.

MANGROVES AREA AND DISTRIBUTION

It is reported that mangrove area in Indonesia is amounted to 9.2 millions ha consisting of 3.7 millions ha in the forest concession area and 5.5 millions ha in the non-forest concession area (Department of Forestry and IPB, 1999).

A large part of Indonesian coastal area bear mangroves from several meters to several kilometers in width.  A big part of developed extensive mangroves grow in the five big islands (Java, Sumatra, Kalimantan, Sulawesi and Papua), and less extensive mangroves in the remaining ones (Table 1).

Table 1.  Area of mangroves and its distribution in Indonesia

NO. ISLAND AREA (HA)
FOREST CONCESSION NON-FOREST CONCESSION
1. Papua 1.326.999 0
2. Kalimantan 841.433 2.779.453
3. Sumatra 1.405.575 1.724.334
4. Sulawesi 121.153 841.247
5. Java 53.565 296.917
6. Other islands 35.522 141.921
TOTAL 3.784.247 5.783.871

In 1993, Department of Forestry allocated mangrove forest into permanent forest concession, convertable production forest, and other use land as shown on Table 2.

Table 2.  The area of mangrove forest based on function status in Indonesia

No. Forest Concession Status Area
(ha) %
1. Permanent Forest Concession
HSA & HW 522,070 14.0
HL 614,120 16.4
HPT 508,490 13.6
HP 847,970 22.7
Total 2,492,650 66.7
2. Non-Permanent Forest Concession
HPK 798,710 21.4
APL 443,890 11.9
Total 1,242,600
Total 1 + 2 3,735,250 33.3

Note:

HSA       =  Nature Preserve                                            HP          =  Production Forest

HW        =  Recreation Forest                                          HPK       =  Convertable Production Forest

HL          =  Protection Forest                                           APL       =  Other Use Land

HPT       =  Limited Production Forest

Beside, there are at least 20 conservation forests bear mangroves inside (Table 3).

Table 3.  Conservation forests bear mangroves as main vegetation type in Indonesia.

No. Location Area

(ha)

1. Berbak, Sumatra 8,500
2. Kuala Langka, Sumatra 1,000
3. Kuala Jambuaye, Sumatra 3,000
4. Muara Angke, Java 25,0
5. Muara Cimanuk, Java 7,100
6. Muara Mauk, Java 1,000
7. Pulau Rambut, Java 45,0
8. Teluk Kelumpang, Kalimantan 13,750
9. Pulau Sepanjang, Madura 2,430
10. Pamuka, Kalimantan 10,000
11. Tanjung Puting, Kalimantan 11,000
12. Muara Kendawangan, Kalimantan 150,000
13. Muara Kahayan, Kalimantan 150,000
14. Teluk Adeng – Teluk Apar, Kalimantan 128,000
15. Gunung Lorentz, Papua ?
16. Pulau Dolok, Papua 105,000
17. Bali Barat, Bali ?
18. Ujung Kulon, Java ?
19. Pulau Bokor ?
20. Pulau Dua ?

MANGROVE FLORA

Soemodihardjo et al. (1993) reported that there are about 157 species of flora growing in mangroves in Indonesia consisting of 52 species of trees, 21 species of shrubs, 13 species of lyana, 7 species of palms, 14 species of grasses, 8 species of herbs, 3 species of parasites, 36 species of ephyphites and   3 species of ferns (Table 4).

Table 4.  Mangrove flora in Indonesia (Soemodihardjo et al., 1993)

Fern

Herb

Pteridaceae Acrostichum aureum Acanthaceae Acanthus ebracteus
Acrostichum speciosum A. ilicifolius
Blechnaceae Stenochlaena palustris A. volubilis
Aizoaceae Sesuvium portulacastrum
Ephyphite Asteraceae Pluchea indica
Adianthaceae Vittaria sp. Chenopodiaceae Tectocornia australica
Aspleniaceae Asplenium nidus Araceae Colocasia esculenta
Davalliaceae Davallia sp. Cryptocorina ciliata
Humata parvula

Herb

Cycads

Cyperaceae Cyperus compactus
Cycadaceae Cycas rumphii C. compressus
Polypodiaceae Cyclophorus cinnamoneous C. javanicus
Drymoglessum heterophyllum C. malacensis
Drynaria sp. Fimbristylis ferruginea
D. rigidula Scirpus grossus
D. sparsisora Thoracostachyum sumtranum
Nephrolepis acutifolia Poaceae Chloris gayana
Phymatodes scolopendria (Gramineae) Cynodon dactylon
Ph. Sinuosa Dyplachne fusca
Platicerium coronarium Paspalum scrobiculatum
Schizaeaceae Lygodium laxum P. vaginatum
Phragmites karka
Ephyphite Sporobolus virginicus
Asclepiadaceae Dischidia benghalensis
D. rafflessia Pandan
D. mommularia Pandanaceae Pandanus tectorus
Hoya sp. Palma
Orchidaceae Aerides odorata Palmae Calamus erinaceus
Anota violaceae (Araceae) Licuala sp.
Bulbophyllum xylocarpi Livistonia saribus
Cymbidium sp. Nypa fruticans
Dendrobium aloifolium Oncosperma tigillarium
D. callybotrys Phoenix paludosa
D. pachyphyllum
D. prostratum Liana
D. rhyzophoreti Asclepiadaceae Cynanchum carnosium
D. subulatum Finlaysonia obovata
D. teretifolium Gymmanthera paludosa
Oberonia laeta Sarcolobus banksii
O. rhizophoreti Asteraceae Wedelia biflora
Malastomalaceae Prachycentria constrica Leguminosae
Plethiandra sessifolia – Caesalpinioideae Caesalpinia bonduc
Rubiaceae Hydnophytum formicarum C. crista
Myrmecodia sp. – Papilionoideae Aganope heptaphylla
Dalbergia candenatensis
Parasite D. menoides
Loranthaceae Amyema grafis Derris trifoliata
A. mackayense Rhanaceae Smythea lancaeta
Viscum ovalifolum Verbenaceae Clerodendron inerme

Table 4 (Continued)

Anacardiaceae Gluta velutina E. indica
Apocynaceae Voacanga grandiflora Flocourtiaceae Scolopia macrophylla
Bataceae Batis agillicola Guttiferae Calophyllum inophyllum
Chenopodiaceae Halosarcia indica Lecythideceae Barringtonia asiatica
Euphorbiaceae Glochidion littorale B. racemosa
Gooddeniaceae Scaevola sericea
Leguminosae Leguminosae
– Papilinoideae Desmodium embellatum – Caesalpinioideae Cynometra iripa
Lythraceae Aegiceras corniculatum C. ramiflora
A. floridum – Mimosaceae Pithecelobium umbellatum
Ardisia elliptica Serianthes spp.
Myrtaceae Osbornia octodonta Pongamia pinnata
Plumbaginaceae Aegialitis annundata Malvaceae Hibiscus granatum
Rubiaceae Ixora timorensis Thespesia populnea
Scyphiphora hydrophyllaceae Meliaceae Xylocarpus granatum
Rutaceae Paramygna angulata X. mekongensis
Sapindaceae Allophyllus cobbe X. moluccensis
Tiliaceae Brownlowia argentata Moraceae Ficus microcarpa
B. tersa Myristaceae Myristica hollrungii
Verbanaceae Prenma obtusifolia Rhizophoraceae Bruguiera cylindrica
Tree B. exaristata
Apocynaceae Cerbera manghas B. gymnorrhiza
C. odollam B. hainessi
Avicennaceae Avicennia alba B. parviflora
A. eucalyptifolia B. sexangula
A. marina Ceriops decandra
A. officinalis C. decandra
Bignoniaceae Dolichandrone spathaceae C. tagal
Bombaceae Camptostemon philipinense Kandelia candel
C. schultzii Rhizophora apiculata
Celastraceae Cassine viburnifolia R. mucronata
Combretaceae Lumnitzera littorea R. stylosa
L. racemosa Sapotaceae Pouteria obovata
Terminalia catappa Sonneratiaceae Sonneratia alba
Ebenaceae Diospyros littorea S. caseolaris
S. ovata
Sterculiaceae Heritiera littoralis
H. globosa

In Indonesia the most important major mangrove species are Rhizophora spp., Bruguiera spp., Ceriops spp., Sonneratia spp., Avicennia spp., Lumnitzera spp., Kandelia candel and Nypa fruticans.  Important minor mangrove species are Excoecaria agalocha, Xylocarpus granatum, Heritiera littoralis, Aegiceras corniculatum, Aegialitis sp., Acrostichum sp., Scyphiphora sp., Pemphis sp., Osbornia sp., Pelliciera sp. and Camptostemon sp..  Beside the common associated mangrove species are Cerbera manghas, Acanthus ilicifolius, Derris sp., Hibiscus tiliaceus, Calamus, and other cycads and ephyphites.

MANGROVE FAUNA

There are about 118 species of marine fauna associated with mangroves in Indonesia consisting of 48 species of Gastropoda, 9 species of Bivalvia and   61 species of Crustaceae (Table 5).

Table 5.  Mangrove fauna in Indonesia

GASTROPODA

Amphibolidae S. fragilis (Lamarck)
Potamididae Terebralia palustris (Linnaeus) Cerithidae Cerithium morum Lamarck
T. sulcata (Born) C. patulum
Telescopium telescopium Linnaeus Clypeomorus granosum
T. mauritsi Butot Melangenidae Melangena galeodes Lamarck
Cerithidea djadjarensis (Martin) Trochidae Monodonta labio (Linnaeus)
C. alata (Philippi) Assimineidae Syncera breviculata (Pfeiffer)
C. ndula (Lamarck) S. javana (Thielf)
C. quadrata Sowerby
S. nitida (Pease)
C. weyersi Datzenberg
S. woodmasoniana (Nevill)
C. cingulata (Gmelin)
Stenothyridae Stenothyra glabrata (A. adams)
Ellobiidae
Cassidula aurisfelis Bruguire
Muricidae Chicoreus adustus
C. lutescens Butot
Drupa margariticola
C. mustelina Deshayes
Nassariidae Nassa olivacea
C. triparietalis (Martens)
Alectrion taenia
C. sulculosa (Musson)
BIVALVIA
Auriculastra subula (Quoy et Gaimard)
Corbiculidae Polymesoda coaxans Gmelin
A. elongata
P. expansa (Mousson)
Ellobium aurisjudae Linnaeus
Verenidae Gafrarium tumidum Roding
E. aurismidae (Linnaeus)
Anomiidae Enigmonia aenigmatica (Chemnitz)
E. polita
Ostreidae Crassostrea cucullata Born
E. tornatelliforme (Petit)
Chamidae Chama fragum
Phytia plicata (Ferussac)
Mytilidae Brachyodontes bilocularis
P. trigona (Troschel)
Spondylidae Spondylus hystrix
P. pantherina
Arcidae Anadara artiquata Linnaeus
Melampus singaporensis (Pfeiffer)
CRUSTACEA
M. pulchellus Petit
Grapsidae Sarmatium incidum
M. semisulcatus Mousson
S. crassum
Littorinidae
Littorina scabra (Linnaeus)
M. crassipes
L. carinifera (Menke)
Sesarma taeniolata White
L. intermedia Philippi
S. meinerti De Man
L. melanostoma Gray
S. edwarsii
L.  ndulate Gray
S. bataviana De Man

Table 5 (Continued)

Neritidae
Nerita planospira Anto
S. moeschi
N. Albicilla Linnaeus
S. cumolpe De Man
N. chameleon
S. smithi H. Milne-Edwards
Neritina violaceae (Gmelin)
S. bocourti A. Milne-Edwards
N. turrita (Gmelin)
S. fasciata Lancherter
N. bicanaliculata
S. palawensis
N. zigzag Lamarck
S. videns De Hans
N. variegata Lesson
S. onychophora De Man
N. auriculata Lamarck
S. rousseauxi H. Milne-Edwards
Clithon corona (Linnaeus)
S. erythrodeactylum Hess
C. ovalaensis
S. longipes (Krauss)
Thiaridae
Melanoides riqueti (Grateloup)
Metapograpsus latifrons (White)
M. tuberculata (Muller)
Ocypodidae
Uca vocans Linnaeus
Amphibolidae
Salinator burmana (Blanford)
U. lactea (De Haan)
Ocypodidae
U. signatus (Hess)
Ocypodidae O. arenaria De Man
U. consobrinus (De Man)
O. cardimana
U. anulipes (H. Milne-Edwards)
Ilyoplax delsmani De Man
U. dussumieri (H. Milne-Edwards)
Tylodiplax indian
U triangularis A. Milne-Edwards
Portunidae Scylla serrata (Forskal)
U. marionis
Gegarcinidae Cardisoma carnifex (Herbst)
U. coartasus
Thalassinidae Thalassina anomala Herbst
U. rosea
Alpheidae Alpheus crassimanus Heller
Macrophtalmus convexus Stimpson
A. bisincisus De Man
M. telescopicus Owen
Paguridae Caenobita cavipes Stimpson
M. tridentatum
Balanidae Balanus spp.
M. definitus Adam et White
Clibanarius spp.
Ocypoda ceratophthalamus (Phallas)

In 1984, Ecology Team of Faculty of Fishery of IPB reported 45 species of fishes live in mangrove of Segara Anakan-Central Java.  They are dominated by Mugil sp., Sillago sp., Johnius sp., Trachiphalus sp., Cynoglossus sp., Setipine sp. and Leiognathus sp..

The common fish species of commercial interest in Indonesia are mullets (Mugil sp.), milkfish (Chanos chanos), tilapia (Chichlidae spp.), snappers (Lutjanidae spp.) and sea bass (Lates calcarifer).  The most common fish is perhaps the mudskippers (Periopththalmus spp.), which is endemic to the mangroves.

In Indonesia, terrestrial mangrove fauna consists of 16 species of mammals, 49 species of reptiles, 6 species of amphibian and 76 species of birds (Table 6).

Table 6.  Species number of terrestrial mangrove fauna in Indonesia (LPP Mangrove, 2000)

NO. ITEMS SPECIES NUMBER
1. Mammal 16
2. Reptile 49
3. Amphibia 6
4. Aves 76

In detail, the species list of terrestrial mangrove fauna in Indonesia are shown on Table 7.

Table 7.  Species of terrestrial mangrove fauna in Indonesia (LPP Mangrove, 2000)

NO. ITEMS SPECIES COMMON NAME
AVES
1. Alcedo caerulescens (L) Small blue Kingfisher
2. Halcyon cyanoventris (L) Javan Kingfisher
3. Todirhampus chloris (L) White Collared Kingfisher
4. Todirhampus sanctus (L) Sacred Kingfisher
5. Pelargopsis capensis (L) Stork-billed Kingfisher
6. Alcedo meninting (L) Blue-eared Kingfisher
7. Anas gibberifrons* Grey Teal
8. Anhinga melanogaster (L) Oriental Darter
9. Collocalia fuciphaga Edible-nest Swiftlet
10. Collocalia esculenta White bellied Swiftlet
11. Apus affinis House Swift
12. Apus pacificus Fork-tailed Swift
13. Ardea cinerea White bellied Swiftlet
14. Ardea purpurea Purple Heron
15. Egretta garzetta+ Little Egret
16. Egretta intermedia (L) Plumed Egret
17. Nycticorax nycticorax Black-crowned Night Heron
18. Ardeola speciosa Javan Pond Heron
19. Butorides striatus Little Heron
20. Bubulcus ibis Cattle Egret
21. Artamus leucorynchus White-breasted Wood Swallow
22. Lalage nigra Pied Triller
23. Caprimulgus affinis Savannah Nightjar

Table 7 (Continued)

NO. ITEMS SPECIES COMMON NAME
AVES
24. Aegithina tiphia Common Iora
25. Mycteria cinerea Milky Stork
26. Streptopelia chinensis Spotted Dove
27. Treron vernans Pink-necked Pigeon
28. Macropygia emiliana Red Cuckoo Dove
29. Geopelia sriata Peaceful Dove
30. Crypsirina temia Racket-tailed Treepie
31. Cacomantis merulinus Plaintive Cuckoo
32. Centropus nigrorufus Sunda Coucal
33. Centropus bengalensis Lasser Caucal
34. Dicaeum trochileum Scarlet-headed Flowwerpecker
35. Hirundo tahitica Pasific Swallow
36. Hirundo rustica BarnSwallow
37. Lanius schach Long-tailed Shrike
38. Motacilla flava Yellow Wagtail
39. Rhipidura javanica  (L) Pied Fantail
40. Cyornis rufigastra Mangrove Blue Flycather
41. Muscicapa sibirica Asian Brown Flycather
42. Nectarinia jugularis   (L) Olive-backed Sunbird
43. Nectarinia calcostheta (L) Copper-throated Sunbird
44. Anthreptes malacensis (L) Brown-throated Sunbird
45. Anthreptes singalensis   (L) Ruby-cheeked Sunbird
46. Oriolus chinensis Black-naped Oriole
47. Parus major Great Tit
48. Phalacrocorax sulcirostris Litle Black Commorant
49. Phalacrocorax niger Litle Cormorant
50. Picoides macei Fulvous-breasted Woodpecker
51. Picoides maluccensis Brown-capped Woodpecker
52. Lonchura punctulata Scaly-breasted Munia
53. Lonchura leucogastroides Javan Munia
54. Paser montanus Eurasian Tree Sparrow
55. Psittacula alexandri Moustached Parakeet
56. Loriculus galgulus Blue-crowned Hanging-Parrot
57. Cacatua alba White Cacatoo

Table 7 (Continued)

NO. ITEMS SPECIES COMMON NAME
AVES
58. Pycnonotus aurigaster Sooty-headed Bulbul
59. Pycnonotus goiavier Yellow-vented Bulbul
60. Amaurornis phoenicurus White-breasted Waterhen
61. Porphyrio porphyrio Purple Swamphen
62. Calidris ferruginea Curwel Sandpiper
63. Tringa hypoleucos Common Sandpiper
64. Prinia familiaris Bar-winged Prinia
65. Prinia polychroa Brown Prinia
66. Orthotomus sepium Olive-backed Tailorbird
67. Orthotomus ruficeps Ashy Tailorbird
68. Orthotomus sutorius Common Tailorbird
69. Gerygone sulphurea Golden-bellied Gerygone
70. Acrocephaus stentoreus Clamourus Reed-warbler
71. Sterna nilotica Gull-billed tern
72. Sterna bergii Great Crested-Tern
73. Acridotheres javanicus Javan Myna
74. Zoothera interpres Chesnut-capped Thrush
75. Zosterops chloris Lemon-bellied White-eye
76. Zosterops palpebrosus Oriental White-eye
MAMMAL
CARNIVORA
1. Vulpes bengalensis Bengal fox
2. Canis aureus Jackal
3. Lutra perspicillata Smooth otter
4. Amblonyx cinerea Otter
5. Herpestes edwardsi Mongoose
6. H. javanica Java mongoose
7. Paradoxurus hemaphroditus Palm civet
8. Viverra zibetha Large Indian civet
9. Panthera tigris Sumatra tiger
10. Felis viverrina Fishing cat
11. F. bengalensis Leopard cat
12. F. haus Jungle cat

Table 7 (Continued)

NO. ITEMS SPECIES COMMON NAME
ARTIODACTYLA
1. Sus scropa Wild boar
2. Muntiacus muncak Barking deer
3. Axis axis Spotted deer
4. Tragulus javanicus Mouse deer
AMFIBI
1 Bufo melanostictus Toad
2 Rhacophorus maculatus Tree frog
3 Rana cyanophlyctia Frog
4 R. limnocharis
5 R. tigrina
6 Microhyla ornata
REPTILIA
CROCODILIA
1 Crocodilus siamensis
2 C. nova guinea Freshwater New Guinea crocodile
3 C. porosus Estuarine crocodile
4 Tomistoma schlegeli False gavial
SQUAMATA
1 Hemidactylus flaviviridis Wall gecko
2 Eublepharis fasciolatus Leopard gecko
3 Gecko gecko Tokay
4 Mabuya multifasciata Common skink
5 Calotes versicolor Lizard
6 Chamaeleon zeylanicus Indian chameleon
7 Varanus sp. Bengal monitor
8 V. salvator Yellow monitor
9 V. flavescens Ruddy sub-nosed monitor
10 Naja naja Cobra
11 Typhlops porractus Blind snake
12 T. acutus Blind snake
13 Ahaetula ahaetulla Whip snake
14 A. cyanochloris
15 Python reticulatus Python
16 Natrix stolata Keel back
17 Enhydris enhydris

Table 7 (Continued)

NO. ITEMS SPECIES COMMON NAME
SQUAMATA
18 Fordonia leucobalia
19 Bungards lividus Krait
20 Acrochordus granulatus Wart snake
21 Hydrophis obscurus
22 H. nigrocinctus
23 Microcephalophis cantoris Sea snake
24 Enhydrina achistoss Beaked deep sea snake
25 Cerberas thynchops
26 Ptyas mucosus Rat snake
27 Spalerosophis diadema
28 Vivera russeli Russell’s viper
29 Pligodon arnensis Kukri snake
30 Oligodon dorsalis
31 Dryophis mycterigans Tree snake
32 Lycondon aulicus Common wolf snake
33 Eryx conicus Russel’s wolf snake
34 Psammophis condouarus
TESTUDINATE
1 Pelochelys bironi Coast shell-turtle
2 Morenia petersi Bengal terrapin
3 Batagur baska River terrapin
4 Lepidochelys olivaca Ridley turtle
5 Chelonia mydas Green turtle
6 Tryonix hurun Peacock soft-shell turtle
7 T. gageticus Ganges soft-shell turtle
8 Lissemys punctata Indian flap-shell turtle
9 Kachuga tecta India roofted turtle
10 K. smiti
11 K. kachuga


MANGROVE UTILIZATION

Forestry

For centuries the Indonesian people have traditionally utilized mangroves mainly for firewood, charcoal, tannin, dyes, food and beverages, medicine, pole and timber.  The main genera used are Rhizophora, Bruguiera, Ceriops, Avicennia, Nypa and Oncosperma.  At an early stage of commercialization, the charcoal making and the fishing are generally the basic economic activities in the mangrove areas.  At 1967 a large scale of commercial mangrove exploitation has been begun with a production of logs, charcoal and chipwoods which is curried out mainly in Sumatra, Kalimantan and to a limited extent in Papua.

Fishery

The capture fisheries in the mangrove areas are usually of small scale.  The Indonesian fishermen working in the mangroves use traditional gear hence, the low level production per person (FAO, 1985).

The most common form of the coastal aquaculture in Indonesia is culture fisheries known as tambak, practised mostly in Java, Sumatra, Kalimantan and Sulawesi.  It is reported that in 1999 the area of tambak is about 455.000 ha with cultured-fish are milkfish and shrimp.

Agriculture

The conversion of mangroves for agriculture occurred in Cilacap, north coast of West Java, South Kalimantan and South Sumatra.  In those places mangroves converted to rice field, coconut plantations and cash crops, cultivated lands.  In 1978, about 1,650 ha of a coconut plantation was established in Indragiri Hilir-Riau.


Urbanization

Recently, Indonesia hasa population of closed to 220 million people.  Consequently, the conversion of wetland including mangroves for resettlements, industrial sites, trafic infrastructure, tourism etc. raise up in many parts of coastal areas in Indonesia, especially in mangrove area closed to the cities.

Mining

Oil drilling, refineries and gas industries are occurred in the mangrove areas such as in East Kalimantan, Segara Anakan, Palembang, Riau, Karawang-West Java, and Bangka-Sumatra.  In some places, the coastal populations traditionally mined gravel, sand, coral and shells such as north of Jakarta.

Salt Pond

In Indonesia, salt ponds are found in a few places.  Among the important ones are in East Java, Madura, in the north coast of Central Java, South Sulawesi and a small part of north coast of West Java (Indramayu).  In some areas those salt ponds are used alternatively as shrimp ponds in the raining season.

MANGROVE DESTRUCTION

The rate of disturbance and variety of the human-induced influences on the mangrove ecosystems have been steadily increasing, so a large proportion of the World’s mangroves is threatened with destruction.  The causes of the mangrove destruction as currently underway in the world can be broadly distinguished as Saenger et al., 1983 (1) over exploitation by the traditional users (e.g. for charcoal, pole and firewood); (2) destructive actions resulting from activities generally unrelated to sustained uses of mangroves (e.g. conversion to agriculture, mining/mineral extraction, aquaculture, etc.);          (3) oil pollution and (4) waste pollution.

In Indonesia about 58% of the total mangrove area (5.3 millions ha) are recognized as destroyed mangroves in which amounted to 70% of them are found in the non-forest concession area.

COMMUNITY TYPE OF MANGROVE

Indonesia is a tropical country with large variations in climate which range from arid and semi-arid types in Lesser Sunda Islands to humid tropical climates.  This kind of phenomena results in some coastal areas receive rainfall  throughout the year whilst  other  areas receive a little one.  This condition promote Indonesian mangrove is much diversified in term of their extent, site and distribution.

Mangroves in Indonesia consist of various community type (Table 8) however, mainly featured by community of true mangrove species.  It is very common pionir species (Avicennia spp. and Sonneratia spp.) grow in the mud lying a long coastline or new established delta forming shruby pionir mangrove community.  The other one, young stand of Rhizophora spp. with very dense canopy grow intermingled with other species (Bruguiera, Xylocarpus and other minor mangroves).  They form young stand dominated by pole stage growing uniformly in the forest.

Old mangrove communities in Indonesia, as a common in Asia – Pacific regions, morphologically are formed by the stand of Rhizophora spp. and Bruguiera spp..  This community forms zonation from seaward to landward, in which several groundcover plants such as Acrostichum aureum, Acanthus spp., and Derris spp. and marginal tree species growing abundantly in the area infrequently sub-merged by the tides.  In many areas, Nypa fruticans forms extensive pure community.  Few mangroves grow sporadically in Nypa community, among of them are Excoecaria agallocha, Heritiera littoralis, Intsia bijuga, Kandelia candel and Cerbera manghas.

Table 8.  Community type of some mangrove forests in Java and outside Java Islands in Indonesia (Kusmana, 1993)

No. Location Community Type Species Richness
A. Java Island
1. Cilacap Avicennia albaSonneratia alba 14
2. Ujung Karawang A. marina – Aegiceras carniculatum 9
3. Indramayu A. marina – A. alba 9
4. Pulau Rambut Rhizophora mucronata – R. stylosa 13
5. Muara Angke A. alba – A. marina 14
6. Baluran R. apiculata – R. stylosa 16
7. Grajagan R. apiculata – Avicennia spp. 14
B. Outside Java Islands
1. Kangean Islands R. stylosa – R. mucronata 12
2. Tanjung Apar R. apiculata – A. alba 13
3. Tanjung Kasom R. apiculata – Xylocarpus granatum 12
4. Way Sekampung Avicennia alba – A. marina 14
5. Banyuasin R. apiculata – Bruguiera gymnorrhiza 9
6. Tanjung Bungur R. apiculata – Nypa fruticans 9
7. Talidendang Besar, Riau B. parviflora – B. sexangula 8
8. Central Sulawesi R. apiculata – Ceriops tagal 8
9. Halmahera R. apiculata – B. gymnorrhiza 14
10. Bone-bone R. apiculata – Sonneratia alba 20
11. Ajkwa Estuary, Papua B. gymnorrhiza – R. apiculata 11

Mangroves are not only growing in alluvial muddy soils, but they also grow in various kinds of specific soils, such as peat soil (B. gymnorrhiza,             R. mucronata, K. candel), stony/rocky soil (Aegiceras floridum, S. alba, R. stylosa) and sand dominated soil (Pemphis acidula).  In general, mangroves in Indonesia grow in Halic hydraquent in areas closed to the sea and Halic sulfacnent in areas landward.


PRODUCTIVITY

It is reported that the biggest standing volume of mangrove (135 m3/ha) is found in South Kalimantan, however, mangroves in Papua have standing volume amounted to 40 m3/ha in average  (Soemodihardjo et.al., 1993).  Mangroves in Estuary of Kapuas river, Segara Anakan, estuary Sesaya river and Bintuni Bay were also reported as the densest mangroves in Indonesia.

Rambe et.al. (1983) reported the standing volume of mangroves in Indonesia as shown on Table 9.

Table 9.  Standing volume of some mangroves in Indonesia

Species Average Standing Volume

(m3/ha)

Density

(ind/ha)

Avicennia spp. 11.60 6 – 45
Sonneratia spp. 7.58 2 – 23
Rhizophora spp. 40.72 37 – 185
Bruguiera spp. 13.61 7 – 125

As well recognized, Indonesian mangroves is one of productive ecosystems which share significantly energy input to the surrounding ecosystems.  They produce high litters as well as biomass as shown on Table 10.

Table 10.  Litterfall productivity and biomass of some mangroves in Indonesia (Kusmana, 1993)

Location Litterfall Productivity

(td. wt/ha/yr)

Aboveground Biomass

(td.wt/ha)

Pamanukan, West Java 6,3
Muara Angke, Jakarta 11,9
Tanjung Apar, East Kalimantan 25,8
Cilacap 8,1
Saleh River, South Sumatra 9,5
Indragiri Hilir, Riau 12,1 40,7 – 177,9
Ajkwa Estuary, Papua 8,0
Pulau Gili Sulat 16,3
Pulau Maluku 178,2 – 421,5

In the early 1982, there were 14 mangrove forest concessionaires with a total area of 919,000 ha in Sumatra, Kalimantan and Papua.  But, recently only 3 mangrove forest concessionaires are operated in Indonesia, i.e. PT. Bintuni Utama Murni Wood Industries, 137,000 ha in Papua, PT. Bios (Bina Ovivipari Semesta), 10,100 ha and PT. Kandelia Alam 18,130 ha in West Kalimantan.

APPLIED SILVICULTURAL PRACTICES OF MANGROVE FORESTS IN INDONESIA

Historically, working plans for mangrove forest had been prepared by Versteegh (1951) in Bengkalis and Haan (1931) in Cilacap, but apparently they did not have much impact until the late 1970’s; therefore, those forest have suffered from lack of management and over-exploitation.

In 1972, Stripwise-Selective-Felling System was employed with the regulations as follows (Wiroatmodjo and Judi, 1979):

  1. No logging activity is allowed within 50 m of the coastel limit of mangrove or within 10 m along a river bank.
  2. Logging is allowed in 50 m wide strips at right angels to the coastline, while 20 m wide strips have to be left between the harvested areas to provide seeds for natural regeneration.
  3. Only trees with a DBH (diameter bright height) of 7 cm up can be cut in the production strips.
  4. If natural regeneration in large area is inadequate, the enrichment planting with 2 x 3 m spacing must be carried out.
  5. Logs should be removed by rafting using boat and artificial canals.
  6. A rotation is set for 20 years.

One drawback of this silvicultural system id that the fish and shrimps tend to accumulate in the certain areas, i.e. in unharvested strips areas, so that the predators (birds, snake, etc) are to easy to prey them.  Consequently, this silvicultural system caused the decreasing of fish and shrimp production which could be taken by fisherman.   To improve the management system of mangrove forest, the Government of Indonesia (c.q. Directorate General of Forestry) introduced the new silvicultural system which is called Seed-Tree Method through Letter Decree No. 60/Kpts/Dj/I/1978.  This system is based upon Verstegh’s recommendation (Verstegh, 1957) for selective cutting baring seed areas for natural regenerations and replenting.  The silent point of this system are as follows:

  1. Felling rotation is set for 30 years, where annual working plan is divided into about 100 ha felling blocks and each felling block itself must be divided into about 10 to 50 ha compartments depending on the forest condition.  The felling rotation can be modified by concessioners based on habitat condition, ecological reasons and forest management objectives after getting an agreement from the Directorate General of Forestry.
  2. Before felling, trees in the compartments must be inventoried using systematic strip sampling with a strip width of 10 m and distance between strips about 200 m.  the inventory of the concession must be carried out by the concessionairs.  Based on the result of this inventory, Directorate General of Forestry will be determine wether the forest is suitable for felling or thinning, and determine the limit of the annual allowable cut.
  3. Trees to be cut must have a diameter of at least 10 cm at 20 cm above the highest prof-roots or buttress.  Only axes, machetes, and mechanical saws to be used for felling the trees.
  4. Cutting can only proceeds in those areas where 40 seed trees of commercial species with a minimum diameter of 20 cm and spaced at 17 m from each other per hectare can be left for seed and seedling production.  Clear cutting is permissible if about 2,500 seedling/ha which is distribute with a distance of 2 m or less from each other over the whole area are available.  Only species of Rhizophora, Bruguiera, and Ceriops may be counted as seed trees.  Whereas, in order to improve the tree growth, thinning should be done at the period of 15 at 20 years after the first felling, if more than 1,100 trees/ha in this secondary forests are available.
  5. Logs must be transport by raft, boat or lori through the river, artificial canals and rel roads where the distance between canals and rel roads must not be less than 200 m.
  6. The hoarding log area is limited to about 0,1 ha in every 10 ha felling area.
  7. Regeneration study must be carried out to determine the effectiveness of the cutting and regeneration cycle.
  8. The protective green belt is determined about 50 m along the coast line and 10 m along the river bank, waterways, and main road.

Through Surat Edaran No. 507/IV-BPHH/1990, Department of Forestry (c.q. Directorate General of Forest Exertion) suggesting the width of the green belt is about 200 m along the coast line and 50 m along the river bank.  Recently, according to the scientifically approach, Soerianegara at al. (1986) suggested that the width of the green belt should be about 130 x the largest tidal range.


REFERENCES

Department of Forestry of Republic of Indonesia.  1997.  National Strategy for Mangrove Management in Indonesia.  Department of Forestry of Republic of Indonesia, Jakarta.

Department of Forestry of Republic of Indonesia and IPB.  1999.  Inventarization and Identification of Mangrove Destruction in Indonesia.  Department of Forestry of Republic of Indonesia and IPB, Jakarta.

FAO.  1985.  Mangrove Management in Thailand, Malaysia and Indonesia.  FAO Environment Paper 4.  FAO, Rome.

Kusmana, C.  1993.  A Study on Mangrove Forest Management Based on Ecological Data in East Sumatra, Indonesia.  Ph.D. Dissertation, Faculty of Agriculture, Kyoto University, Japan.

LPP Mangrove.  2000.  Draft Strategi Nasional Pengelolaan Ekosistem Mangrove Indonesia.  LPP Mangrove.  Bogor.

Saenger.  1983.  Global Status of Mangrove Ecosystems.  IUCN.  Commision on Ecology Number 3.

Soemodihardjo, S., P. Wiroatmodjo, A. Abdullah, I.G.M. Tantra dan A. Soegiarto.  1993.  Dalam Clough, B.F. (Ed.).  The Economic and Environmental Values of Mangrove Forests and Their Present State of Conservation in The South-East Asia/Pasific Region, Hal. 17-40.  ISME-ITTO-JIAM, Jepang.

Spalding, M.  1997.  The Global Distribution and Status of Mangrove Ecosystems.  International News Letter of Coastal Management – Intercoast Network, Special Edition I, 20 – 21.

1)        Paper presented of the workshop of FHRD Committee and Mangrove Rehabilitation/Restoration, 5 August 2008, Rimbawan II Room, Manggala Wanabakti, Ministry of Forestry, Jakarta.

2)        Professor at Department of Silviculture, Faculty of Forestry, Bogor Agricultural University, Indonesia.

Tags: ,

Leave a Reply

You must be logged in to post a comment.